### Innovation in Monitoring: satellites, citizens and sequences

Øyvind Holmstad, CC BY-SA 4.0, Wikimedia Commons

Laurence Carvalho UK Centre for Ecology & Hydrology (UKCEH Edinburgh) @LacLaurence

### Why Monitor?

Collecting actionable data on quantity, quality and use

#### Surveillance

- What is the health of the wetland?
- Can we detect changes in biodiversity?
- Can we see changes in wetland functioning?
- Are we seeing any changes in wetland use?

#### Operational

- What is the impact of specific pressures?
- Are management measures having any impact?

#### Investigative

- What is the cause of changes in quality?

Different questions require different monitoring design



many sites, many subjects to monitor, many questions to answer

VS

demands: reduce monitoring budgets!

Scope for innovation in:

- 1. Design of surveillance networks
- 2. Enhancing coverage and effectiveness of monitoring
- 3. Reducing costs of monitoring





#### Design of Surveillance Network: Status

#### Scotland River Surveillance Network



O'Hare et al. (2020) Fewer sites but better data? Optimising the representativeness and statistical power of a national monitoring network. *Ecological Indicators*, 114, 106321.

# Fewer sites but more representative picture?

#### Surveillance to Detect Change



Need long-term monitoring of "Sentinel sites" to detect change

Frequent sampling to provide sufficient confidence

Carvalho et al. 2013. Hydrobiologia, 704, 127-140

#### Enhancing coverage and confidence

- Earth Observation (EO)
- Remote sensing (hydroacoustics & drones)
- Citizen science
- Environmental DNA



#### Satellite Earth Observation



high spatial and temporal coverage with consistency in measurement

- Wetland extent
- Emergent and Floating vegetation
- Water quality (chlorophyll-a & Harmful Algal Blooms)
- Riparian zones
- Temperature & turbidity

|          |           |            | - Car de |
|----------|-----------|------------|----------|
| Vanz     |           | htc        | h        |
| Agua     | VVC       |            |          |
| TheceoWa | ater Qual | ity Initia | tive     |



| Component    | Parameter                                       | Source    | Spatial<br>resolution | Temporal resolution<br>(with 2 satellites in<br>orbit) |
|--------------|-------------------------------------------------|-----------|-----------------------|--------------------------------------------------------|
| EO – optical | Chl-a                                           | S2        | 10 – 60 m             | 10 days (5 days)                                       |
|              |                                                 | S3        | 300m                  | 2-3 days (daily)                                       |
| EO – optical | TSM                                             | S2        | 10 – 60 m             | 10 days (5 days)                                       |
|              |                                                 | Landsat-8 | 30m                   | 16 days                                                |
|              |                                                 | 53        | 300m                  | 2-3 days (daily)                                       |
| EO – optical | Transparency (K <sub>d</sub> )                  | S2        | 10 – 60 m             | 10 days (5 days)                                       |
|              |                                                 | Landsat-8 | 30m                   | 16 days                                                |
|              |                                                 | S3        | 300m                  | 2-3 days (daily)                                       |
| EO – optical | PC                                              | S3        | 300m                  | 2-3 days (daily)                                       |
| EO – optical | CDOM                                            | S3        | 300m                  | 2-3 days (daily)                                       |
| EO – optical | Floating layers (e.g. oil, cyanobacterial scum) | S2        | 10 – 60 m             | 10 days (5 days)                                       |
|              |                                                 | Landsat 8 | 30m                   | 16 days                                                |

#### Remote sensing: Hydroacoustics



Macrophyte abundance and composition (life forms) Source: Ray Valley, BioBase



https://www.cibiobase.com/



Fish abundance and size class Source: Ian Winfield, CEH

- Rapid, quantitative, non-invasive
- Combine with limited biological survey to identify species
- Passive sampling by boat owners

#### **Citizen Science**

- Public engagement
- Cost-effective
- Improved spatial and temporal coverage
- Quality of data
- Bias in recording effort
- Reliant on volunteer experts for verification



Pocock et al. (2014) Choosing And Using Citizen Science: A Guide To When And How To Use Citizen Science To Monitor Biodiversity And The Environment.

#### Citizen monitoring: smartphone apps



#### **Invasive Alien Species in Europe**



River Obstacles



Bloomin' Algae



FreshWater Watch Earthwatch

## Bloomin' Algae











58% Accepted

cepted 11% Rejected

31% Plausible

- 151 site records in 2020
- 69% don't need further checking big savings to monitoring costs
- Direct early warning notification to Scottish EPA & Local Authorities
- Rapid feedback to public and landowners

### environmental DNA (eDNA)

Meta-barcoding approach where DNA is extracted from the environment

e.g. a water or sediment sample





#### Useful where:

- Identification is difficult
- Labour-intensive sample analysis
- Sampling poorly represents community (e.g. rare species)





Status of rare fish

#### Recommendations

## Innovation can enhance monitoring coverage, increase confidence in assessments and reduce monitoring costs



- Optimal design of monitoring networks related to purpose
- Expand monitoring programmes through EO, sensors and citizen science
- Maintain taxonomic expertise but consider automated and DNA methods to reduce costs

Monitoring is cheap compared to restoration - ensures you target management measures more cost-effectively



Laurence Carvalho laca@ceh.ac.uk @LacLaurence



10191110

0.0007355700000