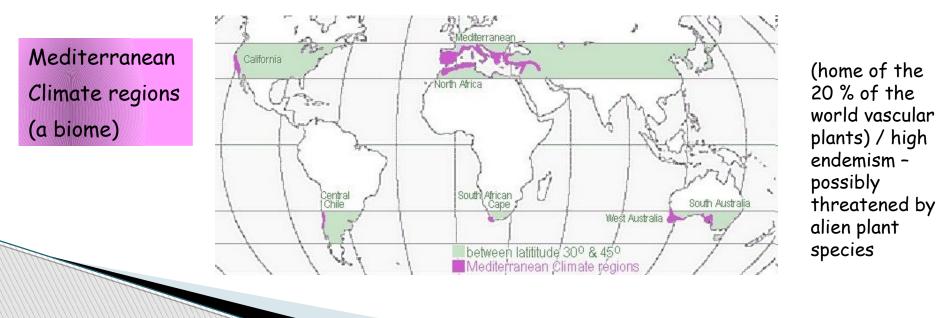

Patterns of plant invasions in the Mediterranean Biome → Basin

Margarita Arianoutsou National and Kapodistrian University of Athens, Greece http://uaeco.edu.gr

1. Introduction

The introduction of alien species has altered the composition of biotas worldwide and has frequently led to biotic homogenization (Winter et al 2010)

As the pace of species introductions is increasing (Hulme et al. 2009), there is a major need to identify the species traits that are common to successful invaders and the habitat types more prone to be invaded


For sessile organisms such as plants, the vulnerability of habitats to invasion seems to follow common patterns in several regions studied:

- Human-made habitats exhibit the highest levels of plant invasions as a result of higher propagule pressure
- > A high proportion of alien plants are found in habitats with fertile soil, high water availability and highly disturbed

Comparisons between climatically similar regions are very informative because

- they <u>reduce large-scale environmental variation</u>
- they pin point the <u>potential consistency of habitat</u> <u>vulnerability to invasions</u> (Jiménez et al. 2008, Vilà et al. 2010, Arianoutsou et al. 2010)
- similar regions may <u>share analogous biotic peculiarities</u> and convergent life forms

ARIANOUTSOU M., DELIPETROU P., VILÀ M., DIMITRAKOPOULOS P.G., CELESTI-GRAPOW L., WARDELL-JOHNSON G., HENDERSON L., FUENTES N., UGARTE-MENDES E. & RUNDEL P.W. 2013. Comparative Patterns of Plant Invasions in the Mediterranean Biome. *PLOS One*. 8(11).

The aims of the study were to provide answers on:

- (1) the taxonomic composition of the naturalized flora
- (2) the emerging chorological patterns
- (3) the life history patterns
- (4) mostly invaded natural habitats

(5) homogeneity in the taxonomic composition across habitats both within a region and across regions

1a) The South African geophytic species *Oxalis pes-caprae* in Lesbos island, Greece, Mediterranean basin;

1b) The South African succulent species *Carpobrotus edulis* in California, USA;

1c) The Eurasian biennial herbs *Echium plantagineum* and *E. vulgare* in Region del Maule, Central Chile;

1d) The South African geophyte, *Watsonia meriana* var. *bulbillifera* on a granite outcrop in south-western Australia;

1e) The Mediterranean basin region herb, *Centranthus ruber* in the Cape Region, South Africa;

1f) The tall Eurasian grass, Arundo donax in a Californian riparian system.

Taxonomy and Chorology

Asteraceae: the second frequent family, (except in South Africa), is the largest dicotyledonous family, also **cosmopolitan** and of **economic importance**

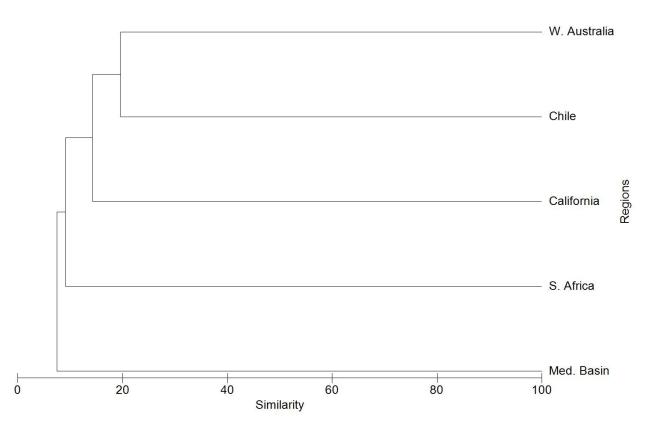
Amaranthaceae: family with high frequency in the Mediterranean basin \rightarrow includes grain species and ornamental plants

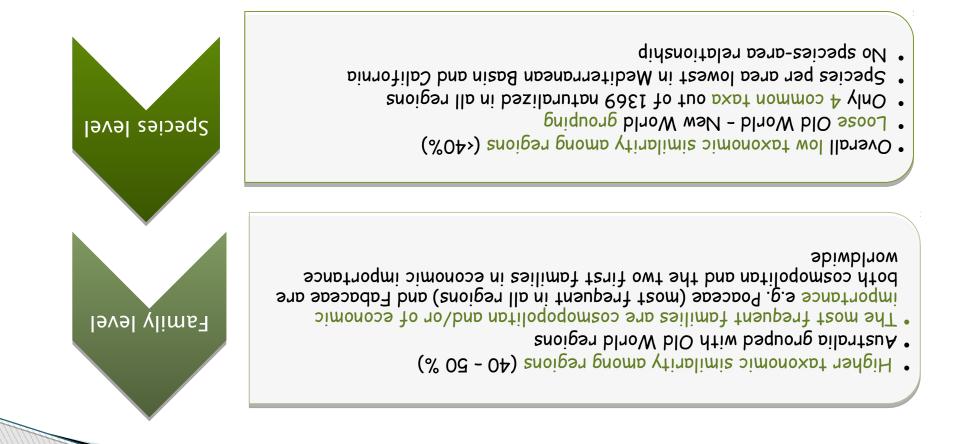
The only species common in all five regions are:

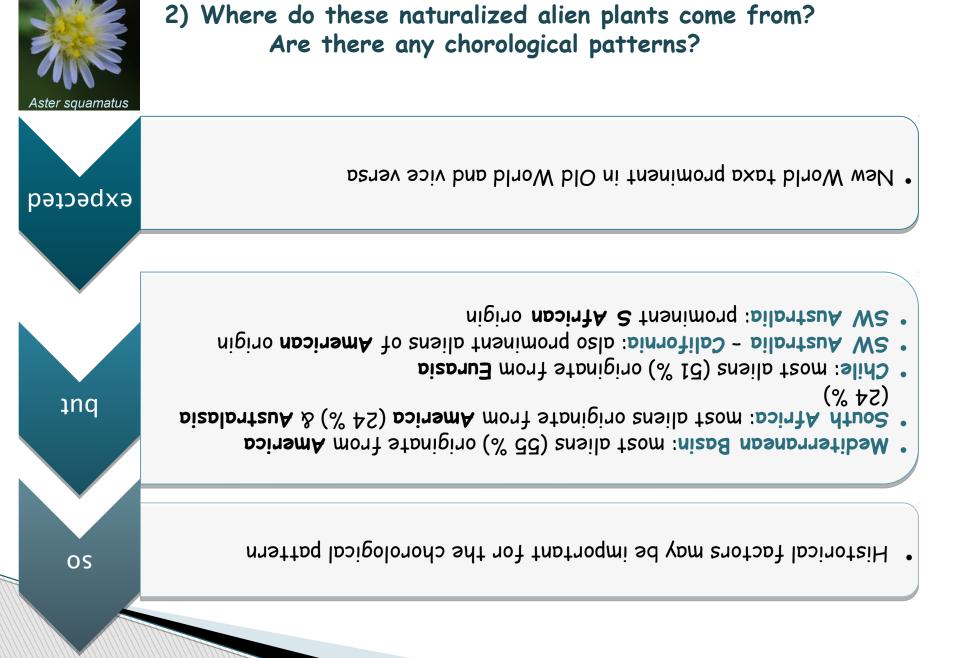
→ Nicotiana glauca (S. American)

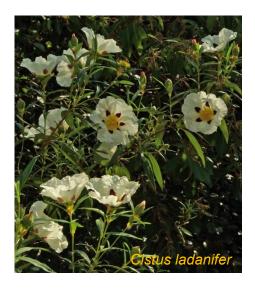
3 acacias

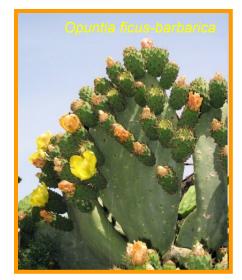
→ Robinia pseudoacacia (N. American)
 → Acacia dealbata (E. Australian)
 → Acacia melanoxylon (E. Australian)

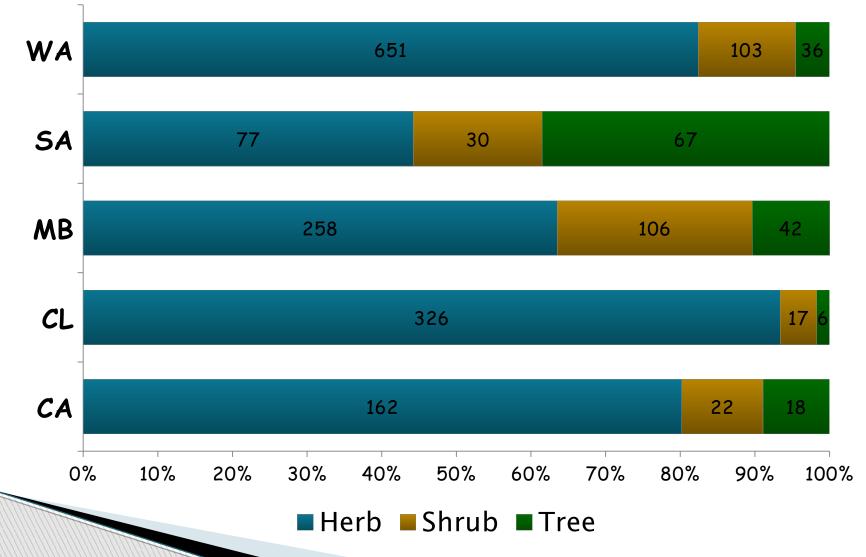







Naturalized neophyte species similarity across the 5 Mediterranean regions





Life History Traits

Growth Form

Life Cycle

3) Which are the growth form, life cycle, and life form patterns?

Similar

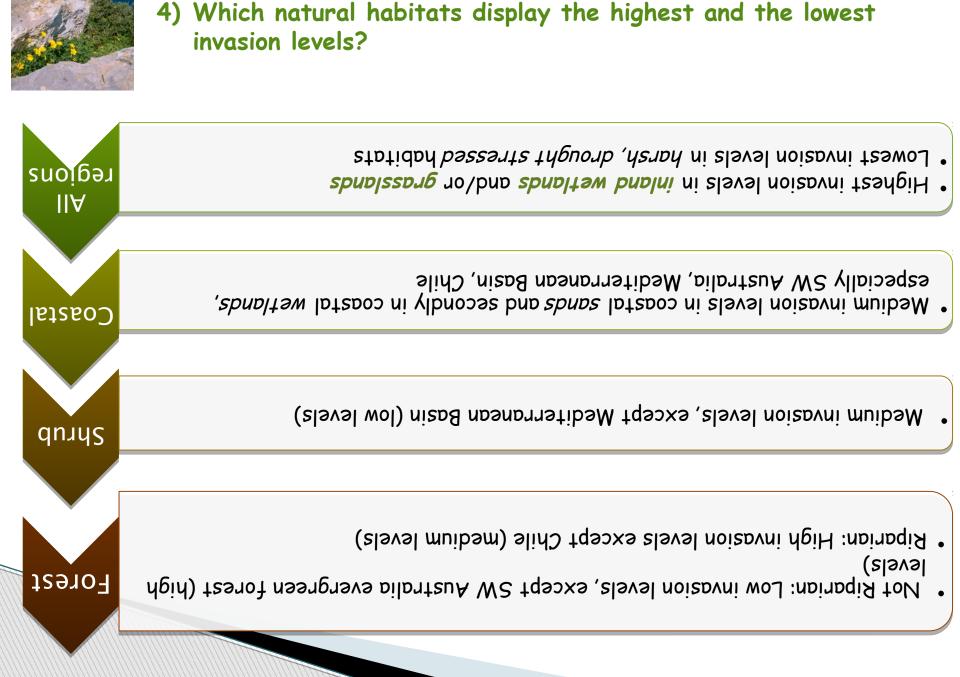
Herbs and Perennials are prominent in all regions

California and Med. Basin share a pattern of annual vs. perennial & herb vs shrub vs tree SW Australia: high frequency of therophytes and geophytes

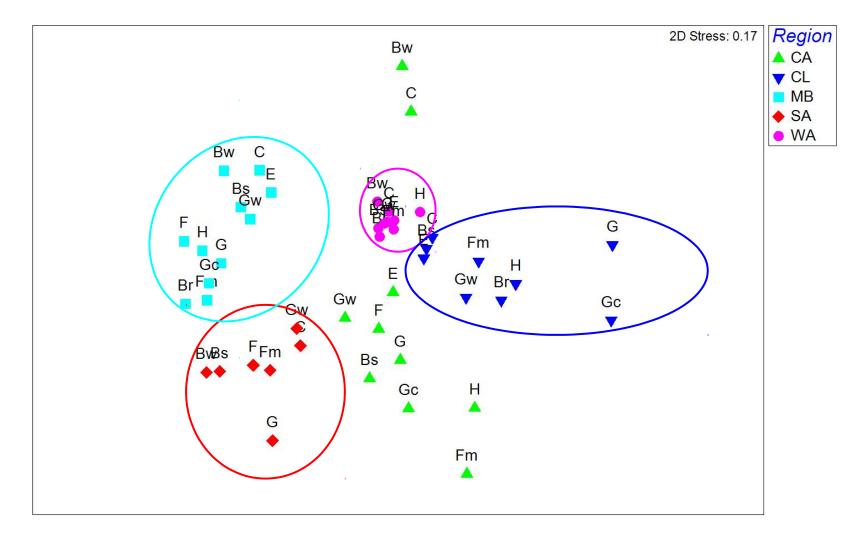
Different

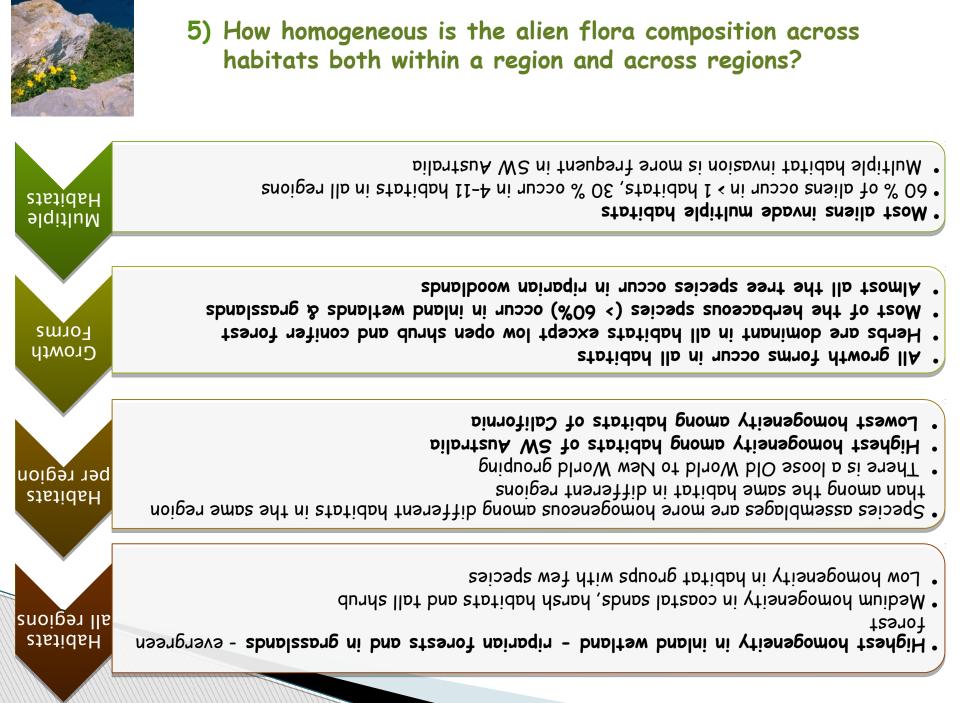
Chile: therophytes are the dominant life form

South Africa: high frequency of phanerophytes



Ailanthus altissima at the riparian zone in C. Greece


Habitats


Opuntia ficus-barbarica in abandoned grazed kermes oak scrub in C. Greece


Species assemblages among the invaded habitats in each region

Habitats are classified per region and not by type

6. Overall Conclusions

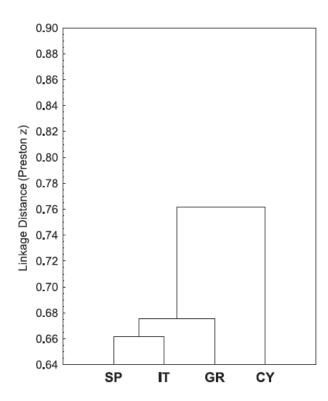

disturbed habitats, especially drought stressed, have the lowest frequency of invasion Low stres and highly disturbed habitats have the highest frequency of invasion and homogenization ARIANOUTSOU M., DELIPETROU P., CELESTI-GRAPOW L., BASNOU C., BAZOS I., KOKKORIS Y., BLASI C. & VILÀ M 2010. Comparing naturalized alien plants and recipient habitats across an east-west gradient in the Mediterranean Basin. *Journal of Biogeography*, 37(9), 1811-1823.

Table 1 Total number of naturalized neophytes per country for each of the four Mediterranean countries studied (a) and totalled for all the countries studied (c); and number of shared naturalized neophytes (plants occurring in more than one of the four countries) per country (b).

	(a) Total per country				(b) Shared				(c) Total
Species	Cyprus	Greece	Italy	Spain	Cyprus	Greece	Italy	Spain	All
Families	51	47	96	87	45 (88)*	46 (98)	79 (82)	78 (90)	117
Genera	100	92	262	243	65 (65)	80 (87)	154 (59)	153 (63)	416
Species	127	125	463	398	63 (50)	94 (75)	198 (43)	193 (48)	782
Native species Area km ²	1612 ¹ 9251	5855 ² 132,700	6611 ³ 293,805	7920 ⁴ 491,310)				

¹Hadjikyriakou (1997); ²Strid & Tan (1997), Tan & Iatrou (2001); ³Conti *et al.* (2005); ⁴Bueno *et al.* (1995). *Numbers in brackets are the percentages of shared families, genera and species.

ARIANOUTSOU M., BAZOS I., DELIPETROU P. & Y. KOKKORIS 2010. The alien flora of Greece: taxonomy, life traits and habitat preferences. *Biological Invasions*, 12(10), 3525-3549.

Naturalized plants in Mediterranean Basin countries

Figure 1 Floristic similarity between the four Mediterranean Basin countries studied on the basis of the naturalized plant species. SP, Spain; IT, Italy; GR, Greece; CY, Cyprus.

Table 3 Naturalized plant species shared by Spain, Italy, Greece and Cyprus.

Species	Family			
Agave americana	Agavaceae			
Ailanthus altissima	Simaroubaceae			
Amaranthus albus	Amaranthaceae			
Amaranthus blitoides	Amaranthaceae			
Amaranthus hybridus	Amaranthaceae			
Amaranthus retroflexus	Amaranthaceae			
Amaranthus viridis	Amaranthacea			
Aptenia cordifolia	Aizoaceae			
Asclepias fruticosa	Apocynaceae			
Aster squamatus	Asteraceae			
Carpobrotus edulis	Aizoaceae			
Chenopodium ambrosioides	Amaranthacea			
Conyza bonariensis	Asteraceae			
Conyza canadensis	Asteraceae			
Conyza sumatrensis	Asteraceae			
Cuscuta campestris	Convolvulacea			
Datura stramonium	Solanaceae			
Echinochloa colona	Poaceae			
Eucalyptus camaldulensis	Myrtaceae			
Mirabilis jalapa	Nyctaginaceae			
Nicotiana glauca	Solanaceae			
Oxalis pes-caprae	Oxalidaceae			
Paspalum distichum	Poaceae			
Phalaris canariensis	Poaceae			
Phytolacca americana	Phytolaccaceae			
Robinia pseudoacacia	Fabaceae			
Solanum elaeagnifolium	Solanaceae			
Tagetes minuta	Asteraceae			
Xanthium strumarium subsp. italicum	Asteraceae			
Xanthium spinosum	Asteraceae			

Table 4 Number of naturalized plant species (percentages in brackets) classified according to growth forms in each of the four countries of the Mediterranean Basin studied.

	Number (%) of naturalized plant species							
Growth form	Cyprus	Greece	Italy	Spain	All*			
Grass	13 (10)	17 (13)	48 (11)	60 (15)	96 (13)			
Herb	55 (42)	75 (60)	253 (56)	196 (49)	402 (52)			
Subshrub/Shrub	27 (21)	19 (15)	100 (22)	72 (18)	159 (21)			
Tree	31 (24)	9 (7)	37 (8)	49 (12)	88 (11)			
Vine	1 (1)	5 (4)	10 (2)	21 (5)	22 (3)			

*Total number of naturalized plant species for all four countries.

Table 6 Number of naturalized plant species (percentages inbrackets) classified according to life cycle in each of the fourMediterranean countries studied.

	Number (%) of naturalized plant species							
Life cycle	Cyprus	Greece	Italy	Spain	All*			
Annual	45 (35)	59 (47)	131 (29)	119 (29)	221 (29)			
Annual/perennial and annual/biennial	0 (0)	1 (1)	3 (1)	1 (0)	9 (1)			
Biennial	0 (0)	1 (1)	12 (3)	1 (0)	9(1)			
Biennial/perennial	0 (0)	1 (1)	1 (0)	0 (0)	4(1)			
Perennial	82 (65)	63 (50)	301 (67)	280 (70)	524 (68)			

*Total number of naturalized plant species for all four countries.

		Number (%) of naturalized plant species							
		Cyprus		Greece		Italy		Spain	
Habitat group		Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
Natural	habitats								
B1	Coastal sand and shingle	8 (6)	3 (2)	38 (18)	7 (3)	27 (9)		40 (11)	3 (1)
B2	Coastal rocks	4 (3)		12 (6)		8 (3)		8 (2)	
B3	Coastal wetland		3 (2)	1-	11 (5)	/	1/		41 (11)
С	Inland water bodies – fens, bogs		41 (33)		50 (23)		187 (65)		21 (5)
Е	Grassland	1 (1)	9 (7)	12 (6)	13 (6)	5 (2)		14 (4)	9 (2)
F1	Shrub – maquis	7 (6)		8 (4)		6 (2)		5(1)	
F2	Shrub – garrigue	10 (8)		5 (2)		1 (0)		3 (1)	
F3	Shrub – phrygana	2 (2)		5 (2)					
F4	Shrub – riparian		1 (1)		12 (6)				85 (23)
G1	Forest – riparian		11 (9)		18 (8)		41 (14)		68 (18)
G2	Forest deciduous			2 (1)				16 (4)	
G3	Forest - broadleaved evergreen	3 (2)		4 (2)				16 (4)	
G4	Forest – coniferous	18 (14)		5 (2)				15 (4)	
Н	Rocks/screes	4 (3)		11 (5)		13 (5)		25 (7)	
Total		57 (46)	68 (54)	103 (48)	111 (52)	60 (21)	228 (79)	150 (39)	227 (61)
Artificia	l habitats								
E1	Grassland (ruderal, disturbed)	4 (1)		26 (8)		22 (2)	1 (0)	163 (28)	<-
I1	Cultivations	68 (23)		62 (18)		167 (16)		51 (9)	
I2	Gardens/parks	47 (16)		33 (10)		121 (11)		27 (5)	
IFG	Woody cultivations	42 (14)		34 (10)		8 (1)		2 (0)	
IG	Tree plantation	9 (3)				22 (2)			
J	Constructed/inhabited	39 (13)	13 (4)	36 (11)	11 (3)	541 (51)	40 (4)	22 (4)	
Jro	Road networks	69 (23)	(-	68 (20)		136 (13)		131 (23)	
Jwa	Walls	5 (2)	•	35 (10)				16 (3)	
Jwp	Waste places	5 (2)		29 (9)				138 (24)	< —
Total		288 (96)	13 (4)	322 (96)	13 (4)	1017 (96)	41 (4)	550 (95)	28 (5)

Table 7 Number and percentages (in brackets) of naturalized plant species in each habitat group.

Percentages are calculated on the basis of the total number of occurrences in natural or artificial habitats and in wet or dry habitats. A species may occur in more than one habitat group. Symbols in habitat groups correspond to the EUNIS classification system level 1.

Opuntia ficus-barbarica

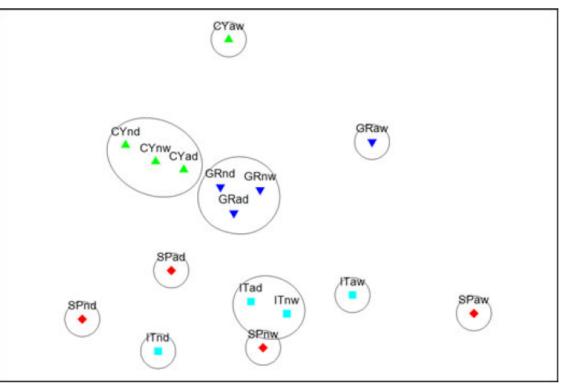


Figure 2 Diagram of the two-dimensional non-metric multi-dimensional scaling ordination performed on the naturalized plant species observed across the habitat categories identified in the four Mediterranean countries studied, pooled into four groups: artificial (a), natural (n), dry (d), wet (w). ◆ SP, Spain; IT, Italy; ▼ GR, Greece; ▲ CY, Cyprus. Contours indicate habitats that are similar at the 25% similarity level.

Although the Mediterranean Basin has been proposed by Lambdon *et al.* (2008b) as one biogeographical zone that may be considered quite distinct from the other European zones in view of the homogenization of the naturalized plant species within the latter (figure 7 in Lambdon *et al.*, 2008b), it should be borne in mind that the Mediterranean countries are placed along an east–west gradient as well as a precipitation gradient. Our study confirms this trend, with the western part being represented by Spain and Italy and the eastern part being represented by Greece and Cyprus.

Thank you

Main conclusions The floristic similarity of naturalized neophytes between the four countries is low, although the overall analysis indicates that the western group (Italy–Spain) is separated from the eastern group (Greece–Cyprus). Similar patterns emerged regarding the life-history traits and recipient habitats. The artificial habitats and the natural wet habitats are those that are invaded most and display the greatest homogenization in all four countries. Coastal habitats display a lower degree of homogenization but a high frequency of aliens. Dry shrubs and rocky habitats display a lower degree of homogenization and a low frequency of aliens.