
Modelling for the global management of
vector-borne diseases

Kamil Erguler, PhD
k.erguler@cyi.ac.cy

The Energy, Environment and Water Research Center
EEWRC



Global vector and disease modelling



The Asian tiger mosquito: Aedes albopictus



Climate-driven Aedes albopictus population dynamics model
Ovitrap data Grid points

 

 210

estimate of the infestation level in the large urban areas 
(exceeding 600 hectares), where the health risk of mos-
quito vectored diseases is higher. 

We explored the spatial structure of Ae. albopictus us-
ing the data collected from the ovitrap network in the 
season 2008. The number and arrangement of the 
ovitraps had been defined on the base of the data of the 
2007 season by Carrieri et al. (unpublished data). Our 
specific aim was to detect significant clusters of abun-
dance and to depict, by means of geostatistical analysis, 
a continuous surface map of Ae. albopictus density in 
the study area. 

The definition of large continuous geographic areas 
with high or low abundance of Ae. albopictus may pro-
vide information on the environmental variables that 
promote species dispersion, useful to implement the dis-
ease risk surveillance programs to prevent CHIKV and 
Dengue epidemic. 

To achieve this aim, the mean egg density data col-
lected by ovitraps in the season 2007 were used to assess 
the mosquito population’s aggregation degree, through 
the application of the Taylor’s power law, and to define 
the minimum sample size to set-up a monitoring design 
for the year 2008 proficient to ensure a high degree of 
accuracy at the provincial and municipal scale. The reli-
ability of the method and its efficiency were assessed in 
the season 2008 measuring the relative variation. 
 
 
Materials and methods 
 
Study area 

The Emilia-Romagna Region is situated in the middle 
North of Italy, lying between 9°11' and 12°45'E longi-
tude and 43°44' to 44°59'N latitude. This region is 
bounded by the Apennine Mountains to the South and 
West, by the Adriatic Sea to the East, and by the Po 
River for most of the northern border (figure 1). Respec-
tively, 47% and 27% of the territory is represented by 
lowlands and hills, with a warm humid climate, charac-
terized by mean daily summer temperature of 24-30 °C 
(May-September) and a mean relative humidity of about 
60% (ARPA, 2008). 

The area has a mean annual rainfall of 600 mm, occur-
ring for 60% between April and October (ARPA, 2008). 
In 2008, the region included 341 municipalities for a 
total inhabited area of 22,122 km2. Seventy percent of 
the 4,275,843 (ISTAT, 2009) inhabitants live in the 
lowlands. 
 
Mosquito’s egg sampling 

The optimal number of ovitraps to be placed in an ur-
ban area varies as a function of the species density and 
dispersion; these parameters depend on weather trend, 
stage of colonization and other environmental condi-
tions (vegetation, breeding sites, etc.). At the initial step 
of colonization the density of the species is patchy and 
aggregated (low mosquito density and high data aggre-
gation) and more ovitraps are needed than in areas at a 
mature step of colonization (high mosquito density and 
more uniform spatial dispersion) in order to achieve the 
same reliability level. 

We calculated the minimum number of ovitraps 
needed according to the Taylor’s equation (Taylor, 
1961; Taylor, 1984; Kuno, 1991). This function has 
been largely used to quantify the aggregation degree and 
the statistically significant sample size in insects moni-
toring: 
(1)  S2 = a*mb 

b measures data aggregation (which is a constant of 
the species), and, when greater than 1, indicates a rela-
tionship between mean and variance, i.e. that data are 
aggregated; a is a constant depending on environmental 
conditions. Both are necessary to define the minimum 
sample unit through the following equation: 
(2)  N=[ZD/2/D]2*a*mb-2 

 
where Z is the Standard Normal Distribution Value for 

a given probability (Buntin, 1994); D is the precision 
level, and according to literature, D = 0.1 is considered 
a sufficient value (Southwood, 1978) while a D value 
between 0.2 and 0.3 is considered optimal for the bino-
mial sampling of Ae. aegypti (Mogi et al., 1990); m is 
the mean eggs density value. 

In our study, 242 municipalities participated to the 
monitoring network, and we referred to regional coordi-
nation of information on the environment (CORINE) 
Land Cover 2003 to individuate the classes (continuous 
urban fabric, discontinuous urban fabric, industrial or 
commercial units) which were considered as inhabited 
areas and covered a total area of 1,050 km2. Every in-
habited area was divided into a number of quadrants 
equal to the minimum number of ovitraps to be placed; 
2,741 ovitraps were positioned, and the distance be-
tween two ovitraps varied from 200 to 800 m, according 
to the number of quadrants per area. 

Ae. albopictus eggs were sampled weekly (from May 
to October). Each ovitrap was constituted by a black 
conic plastic cup (400 ml volume, upper diameter 8 cm, 
lower diameter 6 cm), filled up to 2/3 of its height with 
285 ml of de-chlorinated water (Celli et al., 1994). A 
masonite strip of 12.5 x 2.5 cm was used as egg deposi-
tion substrate. 
 
 

 
 

Figure 1. Emilia-Romagna Region map (Northern It-
aly). Abbreviations of nine provinces: PC = Piacenza, 
PR = Parma, RE = Reggio-Emilia, MO = Modena,  
BO = Bologna, FE = Ferrara, RA = Ravenna, FC = 
Forlì-Cesena, RN = Rimini. 

Albieri, A. et.al. 2010. Bull. Insectol.
(Summary data kindly provided by Romeo Bellini)
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Climate-driven Aedes albopictus population dynamics model
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The model predicts mosquito abundance in time
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The model predicts mosquito abundance in time
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Predicting vector dynamics over Europe
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Predicting vector dynamics over Europe
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Global environmental suitability for the tiger mosquito
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Future environmental suitability for the tiger mosquito
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Global vector and disease modelling



Modelling Aedes albopictus-borne chikungunya
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Time-dependent outbreak probability and impact in Ravenna
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Environmentally-driven sand fly model
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Surveillance data from Greece, Cyprus, and Turkey
Fodele / Crete Geri / Cyprus

Steni / Cyprus

Cyprus TurkeyCrete
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Model fit to calibration data
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Model validation
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Larva development
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Pupa development
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Daily abundance of Ph. papatasi in Cyprus



Daily abundance of Ph. papatasi in Cyprus
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