SAND FLY BIOLOGY AND MANAGEMENT

Özge Erişöz Kasap, PhD Hacettepe University, Biology Department

WHY SAND FLY BIOLOGY SUFFERS?

Ordo: Diptera Family: Psychodidae Subfamily: Phlebotominae Genus: Lutzomyia Brumptomyia Warileya Phlebotomus Sergentomyia Chinius

Leishmaniasis

- Small size
- Morphological similarity
- Difficult to rear in the laboratory conditions
- Difficult to find immature stages in the field conditions (Munstermann, 2005)

LIFE CYCLE

- Holometabolous
- Longer life cyle (6 weeks or more)
 - > Species
- > Temperature, humidty, rainfall
- Oviposition takes place in humid, dark and organic material enriched habitats (Terrestrial)
- 20-100 eggs per female
- Detrivorous four instar larvae
 - > 2-10 mm (1^{-st} 4thinstar)
 - > Thick, sclerotized cuticle
 - > Diapause in fourth instar
- Immobile pupa

ADULTS

MORPHOLOGY

- Small in size (2-4 mm).
- Dense covering of scales on body
- V shape erected wings
- Morphology based taxonomy
- Keys are avalible only for adults
- Problems with species complexes
- Complementary tools (DNA barcoding, etc) have been widely used.

ADULTS FEEDING BEHAVIOUR

- Females and males feed on several plant species.
- Only females feed on vertabrate hosts.
- Autogeny (P. mascitii ?)
- Opportunistic feeders (chicken to human).
- Antropophilic species
- Zoophilic species

- Mixed bloodmeal source
 P. tobbi (Turkey, human-cattle, human vole)
- Nocturnal feeding activity.

ADULTS MATING

- Mating occurs
 - > Near or on the hosts
 - > Before, after or during the boold

feeding

 Species spesific pheromones and courtship songs help conspecific sexes find each other.

> Period and cacophony genes controls the courtship behaviour

> Period gene also important for circadian activity and speciation

ADULTS BREEDING SITES

- Antennal ascoids play an important role for finding a suitable oviposition site.
 - > Conspesific eggs
- (dodecanic acid)
- > Organic material like chicken and rabbit faeces
- (hexanal and 2-methyl-2-butanol)
- First report of an immature sand fly in 1907 by Grassi, in a cellar (*P. mascittii*)

- Time consuming, difficult and inefficient techniques:
 - > Direct visual search
 - > Emergence traps
 - > Soil extraction via flotation
 - > Soil incubation

ADULTS

BREEDING SITES

Domestic

abondened buildings basements and cellars cracks in floors and walls

Peridomestic

animal shelters caves, embankments rotted manure, wells

Sylvatic

ant nests, termite hills rodent burrows, rocks leaf litter roots and holes of trees

M.D. FELICIAGELI, 2004, Med. Vet. Entomol.

ADULTS

DISPERSAL

Characteristic 'hopping movement'

- Good indicator for breeding sites and important for planning control strategies
- Known as poor fliers
 - > Average flight range ~ 300 m
 - > Forest species are less active
- *P. ariasi* in France: ~ 2 km (Killick Kendrick et al., 1984)
- P. papatasi in Israel: ~ 2 km (Orshan

et al., 2016).

FACTORS AFFECTING SAND FLY SURVIVAL AND BIONOMICS

- Many invastigations on the influence of the environmental factors on the bionomics in several countries.
- Temperate regions: temperature, relative humidity and wind velocity
- Tropic-Sub tropical regions: temperature, relative humidity, rainfall.
- Results varies depending on the species, population and the geographical origin.
- Limited number of laboratory experiments.

WHAT DID WE LEARN FROM LABORATORY STUDIES?

- Adult longevity decreased as the temperature increased.
- No oviposition at 15 °C.
- Negative correlation
 between the oviposition
 period and the tempearture.
- Extreme temeparatures had negative effect on fecundity.
- The highest rm at 28 °C.
- Negative correlation
 between the generation time
 and the temperature.

Age spesific mortality and fecundity for *P. papatasi* at six different constant temperature conditions.

Temperature (°C)	Oviposition period (days)*	number of eggs per female*	Adult longevity (days)**		
			female	male	
15	-	-	19.04 ± 6.94	17.84 ± 7.11	
18	13.00 ± 2.83 2	.80 ± 0.90	11.64 ± 3.89	14.96 ± 4.00	
20	8.27 ± 2.00 22	2.24 ± 3.32	9.92 ± 2.48	10.00 ± 2.68	
25	6.33 ± 1.53 20	0.28 ± 3.73	7.72 ± 1.94	7.72 ± 1.53	
28	7.68 ± 2.26 44	4.08 ± 7.79	10.08 ± 3.04	11.00 ± 3.46	
32	4.00 ± 0.00 3	.60 ± 1.55	5.76 ± 1.12	6.20 ± 1.52	
Temperatur (°C)	e Intrinsic rate of increase	e repro	Net ductive rate	Generation time	
	(r _m)*		(R ₀)	(T)	
18	0.007		2.660	271.365	
20	0.031		6.780	123.485	
25	0.050		8.710	54.415	
28	0.098		15.870	56.218	
32	0.011		1.210	36.00	

Erişöz Kasap and Alten, 2006

WHAT DID WE LEARN FROM LABORATORY STUDIES?

Degree-day developmental requirements of *P. papatasi*

Stage	Slope	Intercept	r ²	z (°C)	DD (day)
Egg	0.01010	- 0.11753	0.59	11.60	98.97
Larva	0.00302	- 0.05984	0.32	19.81	330.66
Pupa	0.01260	- 0.22216	0.61	17.63	79.36
Egg to adult	0.00226	- 0.04597	0.25	20.25	440.55

Erişöz Kasap and Alten, 2005

- No adult emergence was observed at 15 °C.
- Reduction in development time with increasing temperature.
- Egg stage was more sensitive to higher temperatures, larval stage was more sensitive to lower temperatures.
- 20.25 °C as a threshold for complete development (egg to adult).
- Useful in predicting the seasonal dynamics in the field conditions?

WHAT DID WE LEARN FROM THE FIELD?

Number of individuals*

- Adana: CL focus in Turkey. Tavr < Z egg-adult (20.25 °C) before May and after October.
- 52 villages were investigated (78 – 530 m asl)
- First adult activity start in May.
- Adults disappeared after October.
- No correlation observed between the monthly temperature, RH and adult density.

SAND FLIES AND GLOBAL WARMIG

EUROPEAN SAND FLIES IN THE 21stCENTURY

- Increase in temperature will provide suitable niches for all of the species.
- Dispersal ability is important for future expansion.

> *P. ariasi* seems to disperse a wider range of area.

> A limited expansion is expected for P. perfiliewi (Fisher et al., 2011).

 Reduction in distribution and shift to higher altitudes for Colombian Lu. evansi and Lu. longipalpis (Gonzales et al., 2013)

Species with current (south-) eastern focus of distribution

PHENOLOGY OF MEDITERRANEAN SAND FLIES

Alten et al., 2016

8 partners from
Mediterranean countries
(Georgia, Turkey, Cyprus,
Greece, Italy, France, Spain,
Portugal)

 Entomological investigations in locations
 L. infantum has been reported.

station.

Standart protocol for sampling:
 > CDC + sticky traps.

> Monthly sampling (2 nights) during

consecutive 2 - 3 seasons at the same

PHENOLOGY OF MEDITERRANEAN SAND FLIES

- Significant correlations between latitude/mean annual temperature and the first appearence of sand flies > except for *P. ariasi*
- No correlation for lattitude/ temperature and the disappearance of sand flies
- No transmission risk from Decemcer to March.

No. of specimens collected: 99.195. No. of *L. infantum* vector specimens: 56. 101

SEASONAL BODY SIZE VARIATION IN P. TOBBI

- Bigger females collected at the begining of season
- Negative correlation between wing size and temperature for females
- Positive correlation between wing size and RH for both sex

WHERE SHOULD WE FOCUS ON?

- Robust species identification for better understandig of species specific ecological requirements and vector – pathogen interactions
- Dispersal activity
- > Habitat fragmenation, reservoir distribution and species interactions
- Breeding sites
 - > Developing new, efficient techniques

THANK YOU !!

